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Data normalization is a crucial preprocessing step for distance-
based classification algorithms such as K-Nearest Neighbor (KNN),
as differences in feature scales can significantly affect distance
calculations and classification accuracy. This study investigates the
impact of data normalization on KNN classification performance
using the Date Fruit Dataset as a case study. Three preprocessing
scenarios are evaluated: raw data without normalization, Min—Max
normalization, and Z-score standardization. In addition, the
performance of standard KNN is compared with distance-weighted
KNN to assess the contribution of distance weighting under different
preprocessing conditions. The experiments are conducted using
stratified 10-fold cross-validation, and model performance is
evaluated using accuracy and standard deviation. Statistical
significance of performance differences is examined using paired t-
test, and sensitivity analysis is performed to analyze the effect of
varying the number of nearest neighbors. The results show that data
normalization leads to a substantial improvement in classification
performance compared to raw data. Z-score standardization achieves
the highest and most stable accuracy, followed by Min—Max
normalization. Distance-weighted KNN consistently produces slightly
higher accuracy than standard KNN; however, the improvement is not
statistically significant after normalization. Sensitivity analysis
indicates that normalized data results in a wider and more stable range
of optimal k wvalues. These findings demonstrate that data
normalization plays a more dominant role than distance weighting in
improving KNN performance. The study provides empirical evidence
that proper preprocessing is essential for reliable KNN-based
classification and establishes a robust baseline for further
enhancements such as feature weighting and metaheuristic
optimization.
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1. Introduction

Classification is a fundamental task in machine learning and pattern recognition, aiming to assign data
instances to predefined categories based on their feature representations. Among various classification
algorithms, the K-Nearest Neighbor (KNN) algorithm remains widely used due to its conceptual simplicity,
ease of implementation, and effectiveness in handling multi-class classification problems[1][2]. KNN is a
non-parametric, instance-based learning algorithm that classifies an unseen sample by considering the
majority class of its nearest neighbors in the feature space[3][4].

Despite its advantages, KNN is highly sensitive to the scale and distribution of input features because it
relies directly on distance calculations, most commonly Euclidean distance[5]. When features have different
ranges or units, those with larger numeric scales tend to dominate the distance computation, potentially
leading to biased neighborhood structures and degraded classification performance[6]. This issue is
particularly evident in real-world datasets, where feature values are often heterogeneous and derived from
different measurement processes.

To address this limitation, data normalization is commonly applied as a preprocessing step to ensure
that all features contribute proportionally to the distance metric. Popular normalization techniques include
Min—Max normalization, which rescales features into a fixed range, and Z-score standardization, which
transforms data to have zero mean and unit variance. Previous studies have reported that normalization can
significantly improve the performance and stability of distance-based classifiers, including KNNJ[7].

In addition to normalization, several studies have proposed enhancements to the standard KNN
algorithm, such as distance-weighted KNN, where closer neighbors are assigned higher influence during the
voting process. This approach aims to reduce the impact of distant neighbors that may not be representative
of the local data structure. While distance weighting has been shown to improve KNN performance in certain
cases, its effectiveness in conjunction with different normalization schemes has not been thoroughly
investigated.

Most existing research evaluates KNN with normalization or weighting in isolation, without
systematically analyzing their combined effects, statistical significance, and sensitivity to the number of
neighbors (k). Moreover, limited attention has been given to empirical studies that explicitly examine how
normalization influences the stability of KNN performance across varying k values.

Therefore, this study aims to systematically analyze the impact of data normalization on KNN
classification performance, using the Date Fruit Dataset as a case study. The contributions of this paper are
threefold: to compare the performance of KNN on raw and normalized data using Min—-Max and Z-score
normalization; to evaluate the additional effect of distance-weighted KNN under different preprocessing
conditions; and to conduct sensitivity analysis on the number of nearest neighbors and statistical significance
testing to ensure reliable conclusions[8§].

The findings of this study provide empirical evidence on the dominant role of data normalization in
distance-based classification and establish a solid baseline for future research on feature weighting and
metaheuristic optimization in KNN-based models.

2. Methodology

2.1 The Proposed Methodology

This study proposes a normalization-centric KNN evaluation framework designed to systematically
analyze the influence of data normalization on distance-based classification performance. Unlike
conventional approaches that treat normalization merely as a preliminary preprocessing step, the proposed
method explicitly positions data normalization as a dominant experimental factor that directly affects
neighborhood formation, distance computation, and classification stability in K-Nearest Neighbor
(KNN)[9][10] .

The proposed framework integrates preprocessing strategies, classification variants, statistical validation,
and parameter sensitivity analysis into a unified and reproducible experimental pipeline. Three preprocessing
scenarios are considered: raw data without normalization, Min—-Max normalization, and Z-score
standardization. All scenarios are evaluated under identical experimental conditions to ensure fair and
controlled comparison.

For each preprocessing scenario, two KNN-based classifiers are applied, namely standard KNN and
distance-weighted KNN[11]. Model performance is evaluated using stratified 10-fold cross-validation to
preserve class distribution and to provide an unbiased estimation of classification performance. Classification
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accuracy and standard deviation are used as primary evaluation metrics to measure predictive performance
and performance stability, respectively.

To strengthen the reliability of the comparison, the proposed framework incorporates paired statistical
significance testing using a t-test to determine whether observed differences in classification performance
are statistically meaningful. In addition, a sensitivity analysis of the number of nearest neighbors (k) is
conducted to assess model robustness and parameter stability across different normalization schemes|[12].

The overall workflow of the proposed normalization-centric KNN evaluation framework is illustrated in
Figure 1, which summarizes the integration of preprocessing, classification, validation, statistical analysis,
and sensitivity evaluation stages.
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Figure 1. Proposed Method

2.2 Dataset Description

This study utilizes the Date Fruit Dataset, a publicly available dataset containing numerical features
extracted from digital images of date fruits belonging to different varieties. The dataset was originally
constructed to support classification tasks in agricultural and food quality assessment domains. Each data
instance represents a single date fruit sample and is characterized by a set of quantitative attributes derived
from image processing techniques.

The extracted features describe morphological and texture-related properties of the date fruits, including
measurements related to shape, size, surface characteristics, and intensity distribution. These features are
continuous-valued and exhibit diverse numerical ranges, reflecting the heterogeneous nature of image-
derived measurements. The target variable is a categorical class label that indicates the corresponding date
fruit variety, forming a multi-class classification problem[13].

A key characteristic of the dataset is the heterogeneity of feature scales, where some attributes span
relatively small numeric ranges while others vary across much larger magnitudes. Such variability in feature
scales makes the dataset particularly suitable for evaluating the impact of data normalization on distance-
based classification algorithms, such as K-Nearest Neighbor (KNN), which rely directly on distance
computations in the feature space[14].

Prior to model construction, an exploratory data analysis (EDA) was conducted to examine feature
distributions, identify differences in value ranges, and assess the overall data quality. This analysis confirmed
the presence of scale disparities among features but did not reveal missing values or anomalies requiring data
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imputation. To ensure a fair and controlled comparison between preprocessing strategies, no feature selection
or dimensionality reduction techniques were applied. All original features were retained throughout the
experiments so that the observed performance differences could be attributed solely to the effects of data
normalization and model configuration[15].

By preserving the original feature set and class distribution, this study maintains the intrinsic
characteristics of the dataset and provides a reliable basis for systematically analyzing how preprocessing
techniques influence the performance and stability of KNN-based classification models.

2.3 Data Preprocessing

Data preprocessing was conducted to ensure that the input data were suitable for distance-based
classification and to enable a fair comparison between different modeling configurations. Given that the K-
Nearest Neighbor (KNN) algorithm relies directly on distance calculations in the feature space, preprocessing
plays a critical role in determining the quality and reliability of the classification results[9].

2.3.1 Motivation for Preprocessing

The Date Fruit Dataset consists of numerical features extracted from image-based measurements, which
inherently exhibit heterogeneous value ranges and variances. Without preprocessing, features with larger
numeric scales would dominate the Euclidean distance computation, leading to biased neighborhood
relationships and degraded classification performance. Therefore, data preprocessing was designed to address
scale disparities while preserving the intrinsic structure and distribution of the original data.

2.3.2 Baseline Condition: Raw Data

As a baseline reference, the original dataset was first evaluated without any preprocessing. This raw
data scenario serves as a control condition to quantify the extent to which normalization techniques influence
KNN performance. By retaining the original feature values, this configuration reflects the behavior of KNN
when applied directly to unscaled real-world data.

2.3.3 Min—Max Normalization:

Min—Max normalization was applied to rescale each feature independently into the range [0, 1]. This
technique preserves the relative distances between data points while ensuring that all features contribute
equally in terms of numeric scale. Min—Max normalization is defined as

X—=Xmi
x' = min 1
Xmax— Xmin ( )

where x denotes the original feature value, and x min and x max represent the minimum and maximum
values of the feature, respectively. This method is particularly effective when feature distributions are
bounded and when preserving proportional relationships between values is important.

2.3.4 Z-Score Standardization

Z-score standardization was employed as an alternative normalization strategy that accounts for feature
distribution characteristics. This method transforms each feature to have zero mean and unit variance, as
defined by.

x' ==t (2)

where p and o denote the mean and standard deviation of the feature, respectively. Z-score standardization
reduces the influence of features with large variance and is well suited for datasets where attributes follow
different statistical distributions. This approach allows distance calculations to be interpreted in terms of
standardized deviations rather than absolute magnitudes.
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2.3.5 Feature-Wise Transformation and Data Leakage Prevention

All preprocessing operations were applied feature-wise, ensuring that each attribute was normalized
independently. To prevent information leakage, normalization parameters (minimum, maximum, mean, and
standard deviation) were computed exclusively from the training data within each cross-validation fold and
subsequently applied to the corresponding test data. This procedure ensures that the evaluation results
accurately reflect real-world deployment conditions, where test data are not available during model training.

2.3.6 Feature-Wise Transformation and Data Leakage Prevention

All preprocessing operations were applied feature-wise, ensuring that each attribute was normalized
independently. To prevent information leakage, normalization parameters (minimum, maximum, mean, and
standard deviation) were computed exclusively from the training data within each cross-validation fold and
subsequently applied to the corresponding test data. This procedure ensures that the evaluation results
accurately reflect real-world deployment conditions, where test data are not available during model training.

2.3.7 Consistency Across Experimental Scenarios

To guarantee a fair comparison, the same preprocessing pipeline was consistently applied across all
model variants, including standard KNN and distance-weighted KNN. No additional transformations, such
as feature selection, dimensionality reduction, or data augmentation, were introduced at this stage. This
design choice ensures that any observed performance differences can be attributed solely to the effects of
data normalization and model configuration.

2.3.8 Role of Preprocessing in Subsequent Analysis

The preprocessed datasets—raw, Min—Max normalized, and Z-score standardized—were subsequently
used as inputs for cross-validation, statistical significance testing, and sensitivity analysis of the parameter k.
By structuring preprocessing as an explicit experimental factor, this study enables a systematic investigation
of how different normalization strategies influence classification accuracy, stability, and robustness in KNN-
based models.

2.4 K-Nearest Neighbor Classification

The K-Nearest Neighbor (KNN) algorithm was employed as the baseline classifier in this study due to
its simplicity and effectiveness in multi-class classification tasks. KNN is an instance-based, non-parametric
learning algorithm that does not require an explicit training phase. Instead, all training instances are stored,
and classification decisions are made at prediction time based on the proximity between data points in the
feature space.

For a given test instance, KNN assigns a class label by identifying the k nearest training instances
according to a predefined distance metric and applying a majority voting scheme among their corresponding
class labels. The value of k controls the size of the local neighborhood and directly influences the bias—
variance trade-off of the classifier. Smaller values of k make the model more sensitive to noise and outliers,
whereas larger values of k provide smoother decision boundaries but may reduce class discrimination[17][18].

In this study, Euclidean distance was used as the similarity measure due to its widespread adoption in
distance-based learning and its suitability for continuous-valued features. The Euclidean distance between
two feature vectors x and y is defined as[19].

d(x,y) =/ Xis, (xi = yi)? Q)

where n denotes the number of features. Euclidean distance assumes that all features contribute equally
to the similarity computation, making the algorithm particularly sensitive to differences in feature scales.
Consequently, the effectiveness of KNN is highly dependent on appropriate data preprocessing, especially
normalization, to ensure that no single feature disproportionately influences the distance calculation.

To further investigate the influence of neighbor proximity, this study also considers a distance-weighted
KNN variant, in which closer neighbors are assigned higher influence during the voting process. This
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weighting scheme aims to emphasize local structure by reducing the impact of more distant neighbors that
may be less representative of the test instance[20].

By analyzing both standard and distance-weighted KNN under different preprocessing conditions, this
study provides a comprehensive assessment of how neighborhood-based classification behavior is affected
by feature scaling and distance computation.

2.5 Model Evaluation and Validation

To ensure a reliable and unbiased assessment of classification performance, this study employed
Stratified 10-fold Cross-Validation as the primary validation strategy. Stratification was applied to preserve
the original class distribution within each fold, which is particularly important for multi-class classification
problems to prevent class imbalance from influencing evaluation results.

In this validation scheme, the dataset was partitioned into ten mutually exclusive and approximately
equal-sized subsets. During each iteration, nine subsets were used for training the model, while the remaining
subset was reserved for testing. This process was repeated ten times, with each subset serving as the test set
exactly once. The final performance metrics were obtained by aggregating the results across all folds[21].
This approach allows every data instance to be used for both training and testing, thereby maximizing data
utilization and reducing the dependency on a single train—test split[22].

The primary performance metric used in this study was classification accuracy, defined as the ratio of
correctly classified instances to the total number of instances in the test set. Accuracy was selected because
the dataset exhibits balanced class distribution, making it an appropriate and interpretable measure of overall
classification performance. For each experimental configuration, accuracy values were computed
independently for each fold[23].

To capture both predictive performance and robustness, classification results were reported in terms of
the mean accuracy and standard deviation across all cross-validation folds. The mean accuracy reflects the
overall effectiveness of the model, while the standard deviation provides insight into the stability and
consistency of the classifier under different data partitions. Lower standard deviation values indicate that the
model’s performance is less sensitive to variations in training and testing data, suggesting better
generalization capability.

Using stratified cross-validation in combination with aggregated performance statistics ensures that the
reported results are not biased by data partitioning and can be reliably compared across different
preprocessing methods, model variants, and parameter settings. This evaluation framework provides a solid
and reproducible basis for subsequent statistical significance testing and sensitivity analysis conducted in this
study.

2.6 Statistical Significance Testing

To rigorously assess whether the observed differences in classification performance between models
were statistically meaningful rather than caused by random variation, statistical significance testing was
conducted using a paired t-test. This test was selected because all evaluated models were trained and tested
on identical data partitions generated by the same stratified cross-validation procedure, resulting in paired
performance measurements across folds.

For each experimental configuration, the accuracy scores obtained from the ten cross-validation folds
were treated as paired samples. The paired t-test evaluates whether the mean difference between two sets of
paired observations is significantly different from zero, making it well suited for comparing machine learning
models under controlled experimental conditions. By accounting for fold-wise pairing, this approach reduces
variability caused by data partitioning and increases the reliability of the statistical comparison.

The null hypothesis (H0) of the paired t-test assumes that there is no significant difference in mean
accuracy between the two compared models. Conversely, the alternative hypothesis (H1) assumes that a
statistically significant difference exists. A two-tailed test was employed to detect any significant
performance difference regardless of direction.
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A significance level of 0=0.05 was adopted in this study, which is commonly used in empirical machine
learning research. Performance differences were considered statistically significant when the resulting p-
value was less than 0.05. When the p-value exceeded this threshold, the null hypothesis could not be rejected,
indicating that the observed performance differences were not statistically significant.

By incorporating paired statistical testing into the evaluation framework, this study ensures that
performance comparisons between standard KNN and distance-weighted KNN are supported by quantitative
evidence. This approach strengthens the validity of the experimental conclusions and helps prevent
overinterpretation of marginal accuracy improvements that may arise from random fluctuations in the data.

2.7 Sensitivity Analysis of Parameter k

A sensitivity analysis was performed to examine the influence of the number of nearest neighbors (k)
on classification performance. Accuracy trends across different k values were analyzed for both standard
KNN and distance-weighted KNN under each preprocessing scenario. This analysis provides insights into
the robustness and stability of the models with respect to parameter selection.

2.8 Implementation Details

All experiments were implemented in Python using the scikit-learn library. Data processing and
numerical computations were performed using NumPy and Pandas. The experimental setup was designed to
ensure reproducibility and consistency across all evaluated scenarios.

3. Results

3.1 Classification Performance on Raw and Normalized Data

The classification performance of K-Nearest Neighbor (KNN) and distance-weighted KNN was
evaluated under three preprocessing scenarios: raw data, Min—Max normalization, and Z-score
standardization. Table I summarizes the mean accuracy and standard deviation obtained from stratified 10-
fold cross-validation.

Table 1. Classification Accuracy of KNN and Weighted KNN under Different Preprocessing Schemes

Model Mean Accuracy Standard Deviation
KNN (Raw) 0.6838 0.0513
Weighted KNN (Raw) 0.6916 0.0414
KNN (Min—Max) 0.8875 0.0310
Weighted KNN (Min—Max) 0.8886 0.0274
KNN (Z-Score) 0.8942 0.0349
Weighted KNN (Z-Score) 0.8953 0.0335

Table 1 shows that normalisation significantly improves classification accuracy compared to raw data in both
KNN variants. Z-score standardisation achieved the highest average accuracy among all preprocessing
methods.

3.2 Statistical Significance Analysis
To evaluate whether the observed performance differences between standard KNN and weighted KNN
were statistically significant, paired t-tests were conducted on the fold-wise accuracy scores. The significance

level was set to 0.05.

Table 2. Paired t-test Results between KNN and Weighted KNN
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Preprocessing Method t-statistic p-value

Raw Data >0 >0.05
Min-Max Normalization >0 >0.05
Z-Score Standardization >0 >0.05

The Table 2 shows that there is no statistically significant difference between standard KNN and weighted
KNN in all pre-processing scenarios.

3.3 Sensitivity Analysis of the Number of Neighbors (k)

A sensitivity analysis was performed by varying the number of nearest neighbors (k=1, 3, 5, 7, 9, 11,
13, 15). The classification accuracy was recorded for each k value under all preprocessing conditions. Across
normalized datasets, the accuracy curves exhibited smoother trends and lower variability compared to raw
data. For both KNN variants, the highest and most stable accuracies were consistently observed when k
ranged between 5 and 11.

3.4 Summary of Key Findings

The experimental results demonstrate clear performance differences between raw and normalized data.
Normalization significantly increases classification accuracy and reduces performance variability. Distance-
weighted KNN consistently yields slightly higher accuracy than standard KNN; however, the differences are
not statistically significant according to paired t-test results.

4. Discussion

The experimental results demonstrate that data normalization plays a dominant role in improving K-
Nearest Neighbor (KNN) classification performance, particularly for datasets with heterogeneous feature
scales such as the Date Fruit Dataset. The substantial performance gap between raw data and normalized data
confirms the sensitivity of distance-based classifiers to feature scale disparities. When raw data are used,
features with larger numeric ranges disproportionately influence the Euclidean distance calculation, resulting
in distorted neighborhood structures and reduced classification accuracy.

The observed improvements obtained through Min—-Max normalization and Z-score standardization
indicate that preprocessing effectively balances feature contributions, allowing distance measurements to
better reflect true similarity among instances. Among the evaluated normalization techniques, Z-score
standardization consistently achieved the highest and most stable accuracy. This suggests that standardization
based on statistical distribution is more suitable for datasets where features exhibit varying variances and
non-uniform distributions.

The comparison between standard KNN and distance-weighted KNN reveals that distance weighting
provides only marginal performance gains once normalization is applied. Although weighted KNN
consistently produces slightly higher accuracy across all scenarios, the paired t-test results indicate that these
improvements are not statistically significant. This finding implies that, after normalization, the local
neighborhood structure is already well-defined, reducing the relative benefit of assigning higher weights to
closer neighbors. Consequently, preprocessing normalization exerts a stronger influence on model
performance than distance weighting.

Sensitivity analysis further supports this conclusion by showing that normalized data result in wider and
more stable ranges of optimal k values. In contrast, performance on raw data fluctuates more significantly
across different k settings, reflecting instability caused by unbalanced feature scales. The increased
robustness observed after normalization highlights its importance not only for improving accuracy but also
for enhancing parameter stability in KNN-based models.

From a methodological perspective, these findings emphasize that data normalization should be
considered a mandatory step in KNN classification pipelines, rather than an optional enhancement. While
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distance-weighted KNN can serve as a useful baseline improvement, its impact is limited in the presence of
effective normalization. Therefore, future performance gains are more likely to be achieved through explicit
feature weighting or optimization-based approaches, rather than relying solely on distance weighting.

Overall, this study contributes empirical evidence that clarifies the relative roles of preprocessing and
model-level modifications in distance-based classification. By systematically analyzing normalization effects,
statistical significance, and parameter sensitivity, the results provide a clearer understanding of how KNN
performance can be reliably improved in practical classification tasks.

5. Conclusions

The Conclusions section should clarify the main conclusions of the research, highlighting its
significance and relevance. The limitations of the work and the directions of future research may also be
mentioned. Please contain nothing not substantiated in the main text. Do not make this section a mere
repetition of the Abstract.

This study investigated the impact of data normalization on the classification performance of the K-
Nearest Neighbor (KNN) algorithm using the Date Fruit Dataset as a case study. The experimental results
demonstrate that data normalization has a substantial and consistent effect on improving KNN performance
compared to using raw data. Both Min—Max normalization and Z-score standardization significantly increase
classification accuracy and reduce performance variability, confirming the critical role of preprocessing in
distance-based learning.

Among the evaluated normalization techniques, Z-score standardization achieves the highest and most
stable performance, indicating its suitability for datasets with heterogeneous feature distributions. The
comparison between standard KNN and distance-weighted KNN shows that distance weighting provides
only marginal accuracy improvements once normalization is applied. Statistical analysis using paired t-tests
confirms that these improvements are not statistically significant, highlighting that normalization has a more
dominant influence on performance than distance weighting.

Sensitivity analysis of the number of nearest neighbors further reveals that normalized data lead to a
wider and more stable range of optimal k values, improving model robustness and reducing sensitivity to
parameter selection. These findings emphasize that proper data normalization should be considered a
mandatory step in KNN-based classification pipelines rather than an optional preprocessing technique.

The results of this study provide empirical evidence that clarifies the relative contributions of
preprocessing and model-level enhancements in KNN classification. As future work, this research can be
extended by incorporating explicit feature weighting strategies, metaheuristic optimization methods, or
hybrid approaches to further enhance classification performance. Additionally, evaluating the proposed
pipeline on other real-world datasets may help generalize the findings and strengthen their applicability to
broader classification tasks.
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