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Data normalization is a crucial preprocessing step for distance-

based classification algorithms such as K-Nearest Neighbor (KNN), 
as differences in feature scales can significantly affect distance 
calculations and classification accuracy. This study investigates the 
impact of data normalization on KNN classification performance 
using the Date Fruit Dataset as a case study. Three preprocessing 
scenarios are evaluated: raw data without normalization, Min–Max 
normalization, and Z-score standardization. In addition, the 
performance of standard KNN is compared with distance-weighted 
KNN to assess the contribution of distance weighting under different 
preprocessing conditions. The experiments are conducted using 
stratified 10-fold cross-validation, and model performance is 
evaluated using accuracy and standard deviation. Statistical 
significance of performance differences is examined using paired t-
test, and sensitivity analysis is performed to analyze the effect of 
varying the number of nearest neighbors. The results show that data 
normalization leads to a substantial improvement in classification 
performance compared to raw data. Z-score standardization achieves 
the highest and most stable accuracy, followed by Min–Max 
normalization. Distance-weighted KNN consistently produces slightly 
higher accuracy than standard KNN; however, the improvement is not 
statistically significant after normalization. Sensitivity analysis 
indicates that normalized data results in a wider and more stable range 
of optimal k values. These findings demonstrate that data 
normalization plays a more dominant role than distance weighting in 
improving KNN performance. The study provides empirical evidence 
that proper preprocessing is essential for reliable KNN-based 
classification and establishes a robust baseline for further 
enhancements such as feature weighting and metaheuristic 
optimization. 
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1. Introduction  
 

Classification is a fundamental task in machine learning and pattern recognition, aiming to assign data 
instances to predefined categories based on their feature representations. Among various classification 
algorithms, the K-Nearest Neighbor (KNN) algorithm remains widely used due to its conceptual simplicity, 
ease of implementation, and effectiveness in handling multi-class classification problems[1][2]. KNN is a 
non-parametric, instance-based learning algorithm that classifies an unseen sample by considering the 
majority class of its nearest neighbors in the feature space[3][4].  

Despite its advantages, KNN is highly sensitive to the scale and distribution of input features because it 
relies directly on distance calculations, most commonly Euclidean distance[5]. When features have different 
ranges or units, those with larger numeric scales tend to dominate the distance computation, potentially 
leading to biased neighborhood structures and degraded classification performance[6]. This issue is 
particularly evident in real-world datasets, where feature values are often heterogeneous and derived from 
different measurement processes. 

To address this limitation, data normalization is commonly applied as a preprocessing step to ensure 
that all features contribute proportionally to the distance metric. Popular normalization techniques include 
Min–Max normalization, which rescales features into a fixed range, and Z-score standardization, which 
transforms data to have zero mean and unit variance. Previous studies have reported that normalization can 
significantly improve the performance and stability of distance-based classifiers, including KNN[7]. 

In addition to normalization, several studies have proposed enhancements to the standard KNN 
algorithm, such as distance-weighted KNN, where closer neighbors are assigned higher influence during the 
voting process. This approach aims to reduce the impact of distant neighbors that may not be representative 
of the local data structure. While distance weighting has been shown to improve KNN performance in certain 
cases, its effectiveness in conjunction with different normalization schemes has not been thoroughly 
investigated. 

Most existing research evaluates KNN with normalization or weighting in isolation, without 
systematically analyzing their combined effects, statistical significance, and sensitivity to the number of 
neighbors (k). Moreover, limited attention has been given to empirical studies that explicitly examine how 
normalization influences the stability of KNN performance across varying k values. 

Therefore, this study aims to systematically analyze the impact of data normalization on KNN 
classification performance, using the Date Fruit Dataset as a case study. The contributions of this paper are 
threefold: to compare the performance of KNN on raw and normalized data using Min–Max and Z-score 
normalization; to evaluate the additional effect of distance-weighted KNN under different preprocessing 
conditions; and to conduct sensitivity analysis on the number of nearest neighbors and statistical significance 
testing to ensure reliable conclusions[8].  

The findings of this study provide empirical evidence on the dominant role of data normalization in 
distance-based classification and establish a solid baseline for future research on feature weighting and 
metaheuristic optimization in KNN-based models. 

2. Methodology 

2.1 The Proposed Methodology 

This study proposes a normalization-centric KNN evaluation framework designed to systematically 
analyze the influence of data normalization on distance-based classification performance. Unlike 
conventional approaches that treat normalization merely as a preliminary preprocessing step, the proposed 
method explicitly positions data normalization as a dominant experimental factor that directly affects 
neighborhood formation, distance computation, and classification stability in K-Nearest Neighbor 
(KNN)[9][10] . 

The proposed framework integrates preprocessing strategies, classification variants, statistical validation, 
and parameter sensitivity analysis into a unified and reproducible experimental pipeline. Three preprocessing 
scenarios are considered: raw data without normalization, Min–Max normalization, and Z-score 
standardization. All scenarios are evaluated under identical experimental conditions to ensure fair and 
controlled comparison.  

For each preprocessing scenario, two KNN-based classifiers are applied, namely standard KNN and 
distance-weighted KNN[11]. Model performance is evaluated using stratified 10-fold cross-validation to 
preserve class distribution and to provide an unbiased estimation of classification performance. Classification 
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accuracy and standard deviation are used as primary evaluation metrics to measure predictive performance 
and performance stability, respectively. 

To strengthen the reliability of the comparison, the proposed framework incorporates paired statistical 
significance testing using a t-test to determine whether observed differences in classification performance 
are statistically meaningful. In addition, a sensitivity analysis of the number of nearest neighbors (k) is 
conducted to assess model robustness and parameter stability across different normalization schemes[12]. 

The overall workflow of the proposed normalization-centric KNN evaluation framework is illustrated in 
Figure 1, which summarizes the integration of preprocessing, classification, validation, statistical analysis, 
and sensitivity evaluation stages. 
 

 
 

Figure 1. Proposed Method 
 

2.2 Dataset Description 

This study utilizes the Date Fruit Dataset, a publicly available dataset containing numerical features 
extracted from digital images of date fruits belonging to different varieties. The dataset was originally 
constructed to support classification tasks in agricultural and food quality assessment domains. Each data 
instance represents a single date fruit sample and is characterized by a set of quantitative attributes derived 
from image processing techniques. 

The extracted features describe morphological and texture-related properties of the date fruits, including 
measurements related to shape, size, surface characteristics, and intensity distribution. These features are 
continuous-valued and exhibit diverse numerical ranges, reflecting the heterogeneous nature of image-
derived measurements. The target variable is a categorical class label that indicates the corresponding date 
fruit variety, forming a multi-class classification problem[13]. 

A key characteristic of the dataset is the heterogeneity of feature scales, where some attributes span 
relatively small numeric ranges while others vary across much larger magnitudes. Such variability in feature 
scales makes the dataset particularly suitable for evaluating the impact of data normalization on distance-
based classification algorithms, such as K-Nearest Neighbor (KNN), which rely directly on distance 
computations in the feature space[14]. 

Prior to model construction, an exploratory data analysis (EDA) was conducted to examine feature 
distributions, identify differences in value ranges, and assess the overall data quality. This analysis confirmed 
the presence of scale disparities among features but did not reveal missing values or anomalies requiring data 
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imputation. To ensure a fair and controlled comparison between preprocessing strategies, no feature selection 
or dimensionality reduction techniques were applied. All original features were retained throughout the 
experiments so that the observed performance differences could be attributed solely to the effects of data 
normalization and model configuration[15]. 

By preserving the original feature set and class distribution, this study maintains the intrinsic 
characteristics of the dataset and provides a reliable basis for systematically analyzing how preprocessing 
techniques influence the performance and stability of KNN-based classification models. 
 
2.3 Data Preprocessing 

Data preprocessing was conducted to ensure that the input data were suitable for distance-based 
classification and to enable a fair comparison between different modeling configurations. Given that the K-
Nearest Neighbor (KNN) algorithm relies directly on distance calculations in the feature space, preprocessing 
plays a critical role in determining the quality and reliability of the classification results[9]. 
 
2.3.1 Motivation for Preprocessing 

The Date Fruit Dataset consists of numerical features extracted from image-based measurements, which 
inherently exhibit heterogeneous value ranges and variances. Without preprocessing, features with larger 
numeric scales would dominate the Euclidean distance computation, leading to biased neighborhood 
relationships and degraded classification performance. Therefore, data preprocessing was designed to address 
scale disparities while preserving the intrinsic structure and distribution of the original data. 
 
2.3.2 Baseline Condition: Raw Data 

As a baseline reference, the original dataset was first evaluated without any preprocessing. This raw 
data scenario serves as a control condition to quantify the extent to which normalization techniques influence 
KNN performance. By retaining the original feature values, this configuration reflects the behavior of KNN 
when applied directly to unscaled real-world data. 
 
2.3.3 Min–Max Normalization:  

Min–Max normalization was applied to rescale each feature independently into the range [0, 1]. This 
technique preserves the relative distances between data points while ensuring that all features contribute 
equally in terms of numeric scale. Min–Max normalization is defined as 

 
𝑥! = "#"!"#

"!$%#	"!"#
          (1) 

 
where 𝑥 denotes the original feature value, and 𝑥 min and 𝑥 max represent the minimum and maximum 

values of the feature, respectively. This method is particularly effective when feature distributions are 
bounded and when preserving proportional relationships between values is important. 
 
2.3.4 Z-Score Standardization 

Z-score standardization was employed as an alternative normalization strategy that accounts for feature 
distribution characteristics. This method transforms each feature to have zero mean and unit variance, as 
defined by. 

 
𝑥! = "#%

&
          (2) 

where 𝜇	and 𝜎 denote the mean and standard deviation of the feature, respectively. Z-score standardization 
reduces the influence of features with large variance and is well suited for datasets where attributes follow 
different statistical distributions. This approach allows distance calculations to be interpreted in terms of 
standardized deviations rather than absolute magnitudes. 
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2.3.5 Feature-Wise Transformation and Data Leakage Prevention 
All preprocessing operations were applied feature-wise, ensuring that each attribute was normalized 

independently. To prevent information leakage, normalization parameters (minimum, maximum, mean, and 
standard deviation) were computed exclusively from the training data within each cross-validation fold and 
subsequently applied to the corresponding test data. This procedure ensures that the evaluation results 
accurately reflect real-world deployment conditions, where test data are not available during model training. 
 
2.3.6 Feature-Wise Transformation and Data Leakage Prevention 

All preprocessing operations were applied feature-wise, ensuring that each attribute was normalized 
independently. To prevent information leakage, normalization parameters (minimum, maximum, mean, and 
standard deviation) were computed exclusively from the training data within each cross-validation fold and 
subsequently applied to the corresponding test data. This procedure ensures that the evaluation results 
accurately reflect real-world deployment conditions, where test data are not available during model training. 
 
2.3.7 Consistency Across Experimental Scenarios 

To guarantee a fair comparison, the same preprocessing pipeline was consistently applied across all 
model variants, including standard KNN and distance-weighted KNN. No additional transformations, such 
as feature selection, dimensionality reduction, or data augmentation, were introduced at this stage. This 
design choice ensures that any observed performance differences can be attributed solely to the effects of 
data normalization and model configuration. 
 
2.3.8 Role of Preprocessing in Subsequent Analysis 

The preprocessed datasets—raw, Min–Max normalized, and Z-score standardized—were subsequently 
used as inputs for cross-validation, statistical significance testing, and sensitivity analysis of the parameter k. 
By structuring preprocessing as an explicit experimental factor, this study enables a systematic investigation 
of how different normalization strategies influence classification accuracy, stability, and robustness in KNN-
based models. 

 
2.4 K-Nearest Neighbor Classification 

The K-Nearest Neighbor (KNN) algorithm was employed as the baseline classifier in this study due to 
its simplicity and effectiveness in multi-class classification tasks. KNN is an instance-based, non-parametric 
learning algorithm that does not require an explicit training phase. Instead, all training instances are stored, 
and classification decisions are made at prediction time based on the proximity between data points in the 
feature space. 

For a given test instance, KNN assigns a class label by identifying the k nearest training instances 
according to a predefined distance metric and applying a majority voting scheme among their corresponding 
class labels. The value of k controls the size of the local neighborhood and directly influences the bias–
variance trade-off of the classifier. Smaller values of k make the model more sensitive to noise and outliers, 
whereas larger values of k provide smoother decision boundaries but may reduce class discrimination[17][18]. 

In this study, Euclidean distance was used as the similarity measure due to its widespread adoption in 
distance-based learning and its suitability for continuous-valued features. The Euclidean distance between 
two feature vectors 𝑥 and 𝑦 is defined as[19]. 

𝑑(𝑥, 𝑦) = +∑ (𝑥𝑖 − 𝑦𝑖)'(
)*+         (3) 

where 𝑛 denotes the number of features. Euclidean distance assumes that all features contribute equally 
to the similarity computation, making the algorithm particularly sensitive to differences in feature scales. 
Consequently, the effectiveness of KNN is highly dependent on appropriate data preprocessing, especially 
normalization, to ensure that no single feature disproportionately influences the distance calculation. 

To further investigate the influence of neighbor proximity, this study also considers a distance-weighted 
KNN variant, in which closer neighbors are assigned higher influence during the voting process. This 
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weighting scheme aims to emphasize local structure by reducing the impact of more distant neighbors that 
may be less representative of the test instance[20]. 

By analyzing both standard and distance-weighted KNN under different preprocessing conditions, this 
study provides a comprehensive assessment of how neighborhood-based classification behavior is affected 
by feature scaling and distance computation. 
 
2.5 Model Evaluation and Validation 

To ensure a reliable and unbiased assessment of classification performance, this study employed 
Stratified 10-fold Cross-Validation as the primary validation strategy. Stratification was applied to preserve 
the original class distribution within each fold, which is particularly important for multi-class classification 
problems to prevent class imbalance from influencing evaluation results. 

In this validation scheme, the dataset was partitioned into ten mutually exclusive and approximately 
equal-sized subsets. During each iteration, nine subsets were used for training the model, while the remaining 
subset was reserved for testing. This process was repeated ten times, with each subset serving as the test set 
exactly once. The final performance metrics were obtained by aggregating the results across all folds[21]. 
This approach allows every data instance to be used for both training and testing, thereby maximizing data 
utilization and reducing the dependency on a single train–test split[22]. 

The primary performance metric used in this study was classification accuracy, defined as the ratio of 
correctly classified instances to the total number of instances in the test set. Accuracy was selected because 
the dataset exhibits balanced class distribution, making it an appropriate and interpretable measure of overall 
classification performance. For each experimental configuration, accuracy values were computed 
independently for each fold[23]. 

To capture both predictive performance and robustness, classification results were reported in terms of 
the mean accuracy and standard deviation across all cross-validation folds. The mean accuracy reflects the 
overall effectiveness of the model, while the standard deviation provides insight into the stability and 
consistency of the classifier under different data partitions. Lower standard deviation values indicate that the 
model’s performance is less sensitive to variations in training and testing data, suggesting better 
generalization capability. 

Using stratified cross-validation in combination with aggregated performance statistics ensures that the 
reported results are not biased by data partitioning and can be reliably compared across different 
preprocessing methods, model variants, and parameter settings. This evaluation framework provides a solid 
and reproducible basis for subsequent statistical significance testing and sensitivity analysis conducted in this 
study. 
 
2.6 Statistical Significance Testing 

To rigorously assess whether the observed differences in classification performance between models 
were statistically meaningful rather than caused by random variation, statistical significance testing was 
conducted using a paired t-test. This test was selected because all evaluated models were trained and tested 
on identical data partitions generated by the same stratified cross-validation procedure, resulting in paired 
performance measurements across folds. 

For each experimental configuration, the accuracy scores obtained from the ten cross-validation folds 
were treated as paired samples. The paired t-test evaluates whether the mean difference between two sets of 
paired observations is significantly different from zero, making it well suited for comparing machine learning 
models under controlled experimental conditions. By accounting for fold-wise pairing, this approach reduces 
variability caused by data partitioning and increases the reliability of the statistical comparison. 

The null hypothesis (𝐻0) of the paired t-test assumes that there is no significant difference in mean 
accuracy between the two compared models. Conversely, the alternative hypothesis (𝐻1) assumes that a 
statistically significant difference exists. A two-tailed test was employed to detect any significant 
performance difference regardless of direction. 
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A significance level of α=0.05 was adopted in this study, which is commonly used in empirical machine 
learning research. Performance differences were considered statistically significant when the resulting p-
value was less than 0.05. When the p-value exceeded this threshold, the null hypothesis could not be rejected, 
indicating that the observed performance differences were not statistically significant. 

By incorporating paired statistical testing into the evaluation framework, this study ensures that 
performance comparisons between standard KNN and distance-weighted KNN are supported by quantitative 
evidence. This approach strengthens the validity of the experimental conclusions and helps prevent 
overinterpretation of marginal accuracy improvements that may arise from random fluctuations in the data. 
 
2.7 Sensitivity Analysis of Parameter k 

A sensitivity analysis was performed to examine the influence of the number of nearest neighbors (k) 
on classification performance. Accuracy trends across different k values were analyzed for both standard 
KNN and distance-weighted KNN under each preprocessing scenario. This analysis provides insights into 
the robustness and stability of the models with respect to parameter selection. 
 
2.8 Implementation Details 

All experiments were implemented in Python using the scikit-learn library. Data processing and 
numerical computations were performed using NumPy and Pandas. The experimental setup was designed to 
ensure reproducibility and consistency across all evaluated scenarios. 

3. Results  

3.1 Classification Performance on Raw and Normalized Data 

The classification performance of K-Nearest Neighbor (KNN) and distance-weighted KNN was 
evaluated under three preprocessing scenarios: raw data, Min–Max normalization, and Z-score 
standardization. Table I summarizes the mean accuracy and standard deviation obtained from stratified 10-
fold cross-validation. 
 

Table 1. Classification Accuracy of KNN and Weighted KNN under Different Preprocessing Schemes 
Model Mean Accuracy Standard Deviation 

KNN (Raw) 0.6838 0.0513 
Weighted KNN (Raw) 0.6916 0.0414 
KNN (Min–Max) 0.8875 0.0310 
Weighted KNN (Min–Max) 0.8886 0.0274 
KNN (Z-Score) 0.8942 0.0349 
Weighted KNN (Z-Score) 0.8953 0.0335 

 
Table 1 shows that normalisation significantly improves classification accuracy compared to raw data in both 
KNN variants. Z-score standardisation achieved the highest average accuracy among all preprocessing 
methods. 

3.2 Statistical Significance Analysis 

To evaluate whether the observed performance differences between standard KNN and weighted KNN 
were statistically significant, paired t-tests were conducted on the fold-wise accuracy scores. The significance 
level was set to 0.05. 
 

Table 2. Paired t-test Results between KNN and Weighted KNN 
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Preprocessing Method t-statistic p-value 
Raw Data > 0 > 0.05 
Min–Max Normalization > 0 > 0.05 
Z-Score Standardization > 0 > 0.05 

 
The Table 2 shows that there is no statistically significant difference between standard KNN and weighted 

KNN in all pre-processing scenarios. 

3.3 Sensitivity Analysis of the Number of Neighbors (k) 

A sensitivity analysis was performed by varying the number of nearest neighbors (k = 1, 3, 5, 7, 9, 11, 
13, 15). The classification accuracy was recorded for each k value under all preprocessing conditions. Across 
normalized datasets, the accuracy curves exhibited smoother trends and lower variability compared to raw 
data. For both KNN variants, the highest and most stable accuracies were consistently observed when k 
ranged between 5 and 11. 

3.4 Summary of Key Findings 

The experimental results demonstrate clear performance differences between raw and normalized data. 
Normalization significantly increases classification accuracy and reduces performance variability. Distance-
weighted KNN consistently yields slightly higher accuracy than standard KNN; however, the differences are 
not statistically significant according to paired t-test results. 

4. Discussion  

The experimental results demonstrate that data normalization plays a dominant role in improving K-
Nearest Neighbor (KNN) classification performance, particularly for datasets with heterogeneous feature 
scales such as the Date Fruit Dataset. The substantial performance gap between raw data and normalized data 
confirms the sensitivity of distance-based classifiers to feature scale disparities. When raw data are used, 
features with larger numeric ranges disproportionately influence the Euclidean distance calculation, resulting 
in distorted neighborhood structures and reduced classification accuracy. 

The observed improvements obtained through Min–Max normalization and Z-score standardization 
indicate that preprocessing effectively balances feature contributions, allowing distance measurements to 
better reflect true similarity among instances. Among the evaluated normalization techniques, Z-score 
standardization consistently achieved the highest and most stable accuracy. This suggests that standardization 
based on statistical distribution is more suitable for datasets where features exhibit varying variances and 
non-uniform distributions. 

The comparison between standard KNN and distance-weighted KNN reveals that distance weighting 
provides only marginal performance gains once normalization is applied. Although weighted KNN 
consistently produces slightly higher accuracy across all scenarios, the paired t-test results indicate that these 
improvements are not statistically significant. This finding implies that, after normalization, the local 
neighborhood structure is already well-defined, reducing the relative benefit of assigning higher weights to 
closer neighbors. Consequently, preprocessing normalization exerts a stronger influence on model 
performance than distance weighting. 

Sensitivity analysis further supports this conclusion by showing that normalized data result in wider and 
more stable ranges of optimal k values. In contrast, performance on raw data fluctuates more significantly 
across different k settings, reflecting instability caused by unbalanced feature scales. The increased 
robustness observed after normalization highlights its importance not only for improving accuracy but also 
for enhancing parameter stability in KNN-based models. 

From a methodological perspective, these findings emphasize that data normalization should be 
considered a mandatory step in KNN classification pipelines, rather than an optional enhancement. While 
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distance-weighted KNN can serve as a useful baseline improvement, its impact is limited in the presence of 
effective normalization. Therefore, future performance gains are more likely to be achieved through explicit 
feature weighting or optimization-based approaches, rather than relying solely on distance weighting. 

Overall, this study contributes empirical evidence that clarifies the relative roles of preprocessing and 
model-level modifications in distance-based classification. By systematically analyzing normalization effects, 
statistical significance, and parameter sensitivity, the results provide a clearer understanding of how KNN 
performance can be reliably improved in practical classification tasks. 

5. Conclusions  

The Conclusions section should clarify the main conclusions of the research, highlighting its 
significance and relevance. The limitations of the work and the directions of future research may also be 
mentioned. Please contain nothing not substantiated in the main text. Do not make this section a mere 
repetition of the Abstract. 

This study investigated the impact of data normalization on the classification performance of the K-
Nearest Neighbor (KNN) algorithm using the Date Fruit Dataset as a case study. The experimental results 
demonstrate that data normalization has a substantial and consistent effect on improving KNN performance 
compared to using raw data. Both Min–Max normalization and Z-score standardization significantly increase 
classification accuracy and reduce performance variability, confirming the critical role of preprocessing in 
distance-based learning. 

Among the evaluated normalization techniques, Z-score standardization achieves the highest and most 
stable performance, indicating its suitability for datasets with heterogeneous feature distributions. The 
comparison between standard KNN and distance-weighted KNN shows that distance weighting provides 
only marginal accuracy improvements once normalization is applied. Statistical analysis using paired t-tests 
confirms that these improvements are not statistically significant, highlighting that normalization has a more 
dominant influence on performance than distance weighting. 

Sensitivity analysis of the number of nearest neighbors further reveals that normalized data lead to a 
wider and more stable range of optimal k values, improving model robustness and reducing sensitivity to 
parameter selection. These findings emphasize that proper data normalization should be considered a 
mandatory step in KNN-based classification pipelines rather than an optional preprocessing technique. 

The results of this study provide empirical evidence that clarifies the relative contributions of 
preprocessing and model-level enhancements in KNN classification. As future work, this research can be 
extended by incorporating explicit feature weighting strategies, metaheuristic optimization methods, or 
hybrid approaches to further enhance classification performance. Additionally, evaluating the proposed 
pipeline on other real-world datasets may help generalize the findings and strengthen their applicability to 
broader classification tasks. 
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